Discussion of

Slicing the Pie: Quantifying the Aggregate and Distributional Effects of Trade

by Simon Galle, Andrés Rodriguez-Clare and Moises Yi

Oleg Itskhoki
Princeton University

JRC 7th Annual Conference
Princeton, 2018
This paper

- The goal: develop a benchmark framework for quantifying gains and losses from trade, including distributional effects
 - Much of trade literature moved away from HO and SF models and lost focus on distributional consequences
 - In particular, the leading quantitative framework, the Ricardian EK model, does not allow for distributional effects
This paper

• The goal: develop a benchmark framework for quantifying gains and losses from trade, including distributional effects
 — Much of trade literature moved away from HO and SF models and lost focus on distributional consequences
 — In particular, the leading quantitative framework, the Ricardian EK model, does not allow for distributional effects

• Ricardian trade model + Roy labor market sorting model
 — Country i has comparative productivity advantage in industry s
 \[F_{i,s}(T_{is}, \theta) \rightarrow \lambda_{ijs} = \frac{T_{is}(\tau_{ij} w_{is})^{-\theta}}{\sum_\ell T_{\ell,s}(\tau_{\ell j} w_{\ell s})^{-\theta}} \]
 — Workers g have comparative advantage in working in sector s
 \[F_{i,g}(A_{igs}, \kappa) \rightarrow \pi_{igs} = \frac{A_{igs} w_{is}^{\kappa}}{\sum_k A_{igk} w_{ik}^{\kappa}} \]
This paper

• The goal: develop a benchmark framework for quantifying gains and losses from trade, including distributional effects
 — Much of trade literature moved away from HO and SF models and lost focus on distributional consequences
 — In particular, the leading quantitative framework, the Ricardian EK model, does not allow for distributional effects

• Ricardian trade model + Roy labor market sorting model
 — Country \(i \) has comparative productivity advantage in industry \(s \)

\[
Frechet(T_{is}, \theta) \quad \rightarrow \quad \lambda_{ijs} = \frac{T_{is}(\tau_{ij}W_{is})^{-\theta}}{\sum_{\ell} T_{\ell s}(\tau_{\ell j}W_{\ell s})^{-\theta}}
\]

 — Workers \(g \) have comparative advantage in working in sector \(s \)

\[
Frechet(A_{igs}, \kappa) \quad \rightarrow \quad \pi_{igs} = \frac{A_{igs}W_{is}^{\kappa}}{\sum_{k} A_{igk}W_{ik}^{\kappa}}
\]

• A very elegant and tractable formulation
 An obvious model for a textbook to teach economic intuition.
Main insights

- Sharp characterization of group-specific welfare gains:

\[
\Delta \log W_g = \left(-\frac{1}{\theta} \sum_s \omega_s \Delta \log \lambda_s \right) + \left(-\frac{1}{\kappa} \sum_s \omega_s \Delta \log \pi_{gs} \right)
\]

= Consumer Gains

= Income Gains

— Workers in group \(g \) lose if sectors of their comparative advantage are disadvantaged by trade, a neoclassical story.
Main insights

• Sharp characterization of group-specific welfare gains:

$$\Delta \log W_g = \left(-\frac{1}{\theta} \sum_s \omega_s \Delta \log \lambda_s \right) + \left(-\frac{1}{\kappa} \sum_s \omega_s \Delta \log \pi_{gs} \right)$$

= Consumer Gains

= Income Gains

— Workers in group g lose if sectors of their comparative advantage are disadvantaged by trade, a neoclassical story.

1. More gains than in the baseline EK model if $\kappa < \infty$
2. Aggregate welfare depends on group-specific income effects
3. Aggregate welfare can be adjusted for inequality aversion
Main insights

• Sharp characterization of group-specific welfare gains:

\[\Delta \log W_g = \left(-\frac{1}{\theta} \sum_s \omega_s \Delta \log \lambda_s \right) + \left(-\frac{1}{\kappa} \sum_s \omega_s \Delta \log \pi_{gs} \right) \]

= Consumer Gains

= Income Gains

— Workers in group \(g \) lose if sectors of their comparative advantage are disadvantaged by trade, a neoclassical story.

1. More gains than in the baseline EK model if \(\kappa < \infty \)
2. Aggregate welfare depends on group-specific income effects
3. Aggregate welfare can be adjusted for inequality aversion

• Potentially large heterogeneity in outcomes within group \(g \)
 — How much residual inequality given estimated \(\kappa \) (dual role)
Main insights

• Sharp characterization of group-specific welfare gains:

\[
\Delta \log W_g = \left(-\frac{1}{\theta} \sum_s \omega_s \Delta \log \lambda_s \right) + \left(-\frac{1}{\kappa} \sum_s \omega_s \Delta \log \pi_{gs} \right)
\]

= Consumer Gains \hspace{2cm} = Income Gains

— Workers in group \(g \) lose if sectors of their comparative advantage are disadvantaged by trade, a neoclassical story.

1. More gains than in the baseline EK model if \(\kappa < \infty \)
2. Aggregate welfare depends on group-specific income effects
3. Aggregate welfare can be adjusted for inequality aversion

• Potentially large heterogeneity in outcomes within group \(g \)
 — How much residual inequality given estimated \(\kappa \) (dual role)
 — Adjust welfare for residual inequality
 — Are changes in residual inequality consistent with the data?
Skilled vs unskilled

• The paper finds overall gains, which however vary considerably across groups g
 — Groups g in the paper correspond to detailed geography \times two educational bins

• One surprising result is the high correlation (0.87) between the outcomes of high and low skill groups across geographies
The paper finds overall gains, which however vary considerably across groups g.

- Groups g in the paper correspond to detailed geography \times two educational bins.

One surprising result is the high correlation (0.87) between the outcomes of high and low skill groups across geographies.

This seemingly contrasts with the empirical findings of ADH:
- higher skill workers in affected geographies experience less unemployment and income loss.

What feature of the data ensures this result?
The paper focuses on the long-run distributional effects after the adjustment to trade is complete.

- Arguably, the key disruptions empirically are transitory, along the adjustment to trade shocks.
- Yet, these transitions can last very long.
- What is the right model to use?
Relationship to the real world

1. The paper focuses on the long-run distributional effects after the adjustment to trade is complete
 - Arguably, the key disruptions empirically are transitory, along the adjustment to trade shocks
 - Yet, these transitions can last very long
 - What is the right model to use?

2. What are worker groups g?
 - Why geography is a fixed characteristic of workers?
 - Why worker productivity is geography-specific?
Relationship to the real world

1. The paper focuses on the long-run distributional effects after the adjustment to trade is complete
 - Arguably, the key disruptions empirically are transitory, along the adjustment to trade shocks
 - Yet, these transitions can last very long
 - What is the right model to use?

2. What are worker groups g?
 - Why geography is a fixed characteristic of workers?
 - Why worker productivity is geography-specific?
 - This points to the role of firms, absent in a neoclassical model. Why firms do not move towards workers? Agglomeration.
Relationship to the real world

1. The paper focuses on the long-run distributional effects after the adjustment to trade is complete
 - Arguably, the key disruptions empirically are transitory, along the adjustment to trade shocks
 - Yet, these transitions can last very long
 - What is the right model to use?

2. What are worker groups g?
 - Why geography is a fixed characteristic of workers?
 - Why worker productivity is geography-specific?
 - This points to the role of firms, absent in a neoclassical model. Why firms do not move towards workers? Agglomeration.

3. The model features no unemployment and no non-employment, two important margins in the data
A frictional model

- Itskhoki and Helpman (2015): adjustment to trade in a Melitz model with DMP search and matching friction
A frictional model

- With labor search frictions alone, trade shocks create either little unemployment or little income loss
A frictional model

- With labor search frictions alone, trade shocks create either little unemployment or little income loss

Two counterfactual features:
1. If search frictions are large, firms do not fire workers
2. Free entry forces firm to enter where workers are