Payments, Credit & Asset Prices

Monika Piazzesi Martin Schneider
Stanford & NBER Stanford & NBER

February 2016
Dollar payments; quarterly at annual rates

Enduser

Interbank w/ reserves

$ Trillions

Enduser

Interbank w/ reserves

$ Trillions

nonfinancial

NSCC/DTCC

FICC + FedSec

NSS

FedSec

FedFunds

other settlement

residual

05 07 09 11
Simple model of payments & asset pricing

- Endusers = households & institutional investors
 - pay for goods & securities with payment instruments = inside money
 - payment instruments = deposits, MMMF shares, credit lines

- Banks handle enduser payment instructions
 - make interbank payments with reserves = outside money
 - liquidity management: hold reserves or rely on interbank credit?
 - capital structure: liquidity benefit vs leverage cost of pmt instruments

- Government issues debt & reserves, trades in securities

⇒ Questions
 - Interaction securities markets vs payment system
 - How does policy affect asset prices & nominal price level
 - What does an efficient payment system look like?
Baseline: only goods transactions require inside money
Extension: asset trades also require inside money

Households → Deposits → Banks → Equity → Active traders → Trees

Banks → Equity → Active traders

Banks → Overnight credit → Reserves

Trees

Bank trees

Nominal govmt debt

Reserves
Inside money: deposits & credit lines

Households → Banks
- equity
- credit lines
- deposits
- overnight credit

Banks → Active traders
- equity
- credit lines

Active traders → Trees

Banks → Bank trees

Nominal govmt debt

Reserves
Model summary

- **Households**
 - infinitely-lived, linear utility, averse to Knightian uncertainty
 - pay for goods with inside money

- **Financial institutions: banks & active traders**
 - maximize shareholder value, freely adjust equity, constant returns
 - idiosyncratic liquidity shocks require payments
 - banks pay with reserves (possibly borrowed)
 - active traders pay with inside money
 - bank leverage cost = resources used when commitments made
 - increases with interbank credit, inside money (incl. credit lines)
 - declines with value & safety of bank assets

- **Government**
 - interest rate on reserves, paths for short term debt & reserves
 - government leverage cost declines with claims on future taxes

- **Competitive equilibrium with flexible prices**
 - inside money supply, nominal price level & real asset prices
 - share of resources used up as leverage cost
Determination of prices

- Nominal price level: $PT = \bar{v}(D + L)$
 - bank supply of inside money $D + L$
 - T includes institutional investor trades
 - inflation follows from growth rate of nominal govmt liabilities

- Opportunity cost of payment instruments
 - inside money in enduser layer: depends on bank leverage, liquidity cost
 - reserves in bank layer: depends on real return set by government

- Intermediary asset pricing
 - banks’ valuation high if collateral scarce
 - endogenous market segmentation
 - e.g. short interest rate priced only by banks
 - active traders’ valuation high if inside money cheap
Steady state equilibria with goods trade only

- plot aggregate bank leverage & real reserves
- real short interest rate inversely related to bank leverage

- scarce reserves
 - banks borrow reserves
 - if large liquidity shock
 - (US before 2008)

- abundant reserves
 - banks never borrow
 - (US since 2008)
Capital structure curve

- What bank leverage needed to handle transactions \(T \) given reserves?
- Slopes down in plane: more collateral \(\rightarrow \) lower leverage

- Steeper if banks’ share of nominal assets higher
- More real reserves (given nominal reserves) \(\Rightarrow \) lower price level
 increases nominal collateral
Liquidity management curve

- What leverage maintains return on equity given reserves?
- Slopes upward in plane: reserves less scarce / useful → more leverage

- scarce reserves: more reserves less interbank credit less leverage cost
- abundant reserves: no liquidity benefit leverage constant short rate = reserve rate
Shifts in capital structure curve

- Shift up: less collateral in banking system
- More leverage needed at any given level of reserves

- open market purchase
 = fewer bonds
 = less collateral

- new steady state:
 real rate decreases
 price level increases
 (less than reserves!)

- large shift makes reserves abundant
Shifts in liquidity management curve

- Shift down: higher real return on reserves
- Lower leverage needed to maintain same return on equity

- higher interest on reserves or lower growth rate of nominal liabilities
 → lower tax on reserves

 - new steady state: real rate increases price level decreases
Shifts in liquidity management curve

- Shift down: higher real return on reserves
- Same return on equity at lower leverage

- Large shift makes reserves abundant
- Policy tools then: unconventional trades
- Real return on reserves
- Banks’ share of nominal assets matters for slope of CS curve & price level
Optimal policy

- Minimize total cost of leverage = move towards origin
- Trade off bank vs government leverage

- abundant reserves optimal only if government borrowing cheap
- select optimal equilibrium via real return on reserves
Increase in uncertainty with active traders

- **Shift up**: bank collateral worth less
- **Shift down**: lower demand for inside money from active traders

forces on price level:
- inside money supply ↑
- inside money demand ↓

details of financial structure matter!
Summary of main results

- Interaction securities markets vs payment system
 - value of banks’ collateral \rightarrow supply of inside money
 - value of institutional investor trades \rightarrow demand for inside money

- Government policy tools
 1. set real return on reserves = tax on intermediate input
 2. change mix of collateral by issuing or trading securities
 - both affect collateral & liquidity benefits on assets
 - permanent effects on real asset prices
 - policy stance cannot be summarized by interest rates alone

- Scarce vs abundant reserves?
 - select by setting interest on reserves, nominal liabilities
 - optimal policy depends on government vs bank leverage costs