The dollar, bank leverage and the deviation from covered interest parity

Stefan Avdjiev, Wenxin Du, Cathérine Koch, and Hyun Song Shin

Discussion by

Richard M. Levich
NYU Stern

Prepared for The Future of Globalization: Trade, Finance and Politics
Julus-Rabinowitz Center, Princeton University
February 22-23, 2018
The Roadmap

- What’s become of Covered Interest Parity?
 - Once a benchmark in market pricing, a cornerstone of international finance models, supported by decades of empirical evidence, almost a truism
 - Since the Global Financial Crisis (2007-8), large, variable, and persistent violations

- What explains CIP deviations, post GFC?
 - Is it the usual suspects – transaction costs, counterparty risks, limits to arbitrage?
 - A more nuanced explanation linking leverage and the USD

- What are the implications?
 - For borrowers, investors, hedging, and globalization
A long history going back to Keynes (1923)
 » CIP true in theory, not very precise in practice
 » CIP deviations due to: Transaction costs, capital controls, counterparty risks, execution risks, unwillingness to risk large sums for small profit (limits to arbitrage)

CIP deviation needed to induce arbitrage
 » Keynes: 0.50%; Holmes: 0.25%;
 » Branson: 0.18%; Einzig: 0.06%

Rise of offshore, euro markets in 1960s
 » Banks lend to each other, unsecured, in size at LIBOR
 » CIP deviations pushed toward zero
CIP could be true by construction

\[F = S \frac{(1 + i)}{(1 + i^*)} \]

Better data – high frequency, time-synched, real prices – document CIP deviations very small and short lived.

One-way arbitrage [Deardorff (1979)]
 » Yet another factor minimizing deviations
CIP Before and After the Global Financial Crisis

Deviations from Covered Interest Parity, 3-month maturity
January 1, 2000 - April 30, 2017

Richard Levich
Princeton Conference, February 22-23, 2018
Explaining the Patterns of CIP Deviations

- Stronger broad USD index ⇔ Wider CIP deviations
- Strong USD, cross-border USD loans more risky, bank B/S less secure, bank lending capacity down, marginal cost of funds up, CIP deviations increase
- “Limits to Arbitrage” story

Richard Levich
Princeton Conference, February 22-23, 2018
Cross sectional variation in USD cross currency basis

- Related positively and significantly to a “dollar beta”
- Stronger link in the 5-yr than in the 3-mo
Net Investment Position & Hedging Pressure
An Alternative, Complementary Story

- Hedging pressure from corporate repatriation of cross-border earnings; formerly filled by banks

Consider splitting sample, 3 periods (Baran & Witzany, 2017)

» 01/08-12/09 (financial crisis); 01/10-12/13 (European debt crisis); 01/14-06/17 (diverging EU-US monetary policy)

» Other drivers: Credit risk of financial sector (CDS), monetary policy indicator (Fed & ECB b/s)

» Still a role for ΔSpot, but variable across periods, larger R^2

What explains deviations for non-USD cross rates?

» Is basis transitive? 3-mo 5-yr

◆ USD basis vs. EUR -31.0 -25.9

◆ USD basis vs. NZD +.7.0 +24.3

(?) ⇒ EUR basis vs. NZD -38.0 -50.2

Tests for other base currencies, e.g. EUR

» Structural break in the series? Concluding sentence.
Implications of non-zero CIP basis

- CIP: $F = S \left[\frac{(1+i)}{(1+i^*)}\right] \Rightarrow$ perfect capital mobility
 - Equivalence of forward and money market hedging
 - Equivalence of yields (i and i^*) on a covered basis
 - Financial market choice and portability on a global basis

- $F \neq S \left[\frac{(1+i)}{(1+i^*)}\right] \Rightarrow$ PCM breaks down, impacts
 - Hedging strategies, borrowing/investment strategies
 - Ability and/or appetite to take and/or hedge risks
 - Portfolio composition by currency or issuers
Implications for Hedging

When cross-currency basis against EUR < 0

\[F > S \frac{(1 + i)}{(1 + i^*)} \]

- EUR forward sellers pick LHS (forward hedge)
- EUR forward buyers pick RHS (MM hedge)
 - Hedgers’ debt capacity and credit rating may push them into more expensive forward rate hedge

Richard Levich
Princeton Conference, February 22-23, 2018
Implications for USD-based Agents

When cross-currency basis against EUR < 0

\[
\frac{F(1 + i^*)}{S} > (1 + i)
\]

- USD borrowers pick RHS (plain vanilla)
 - An arbitrage opportunity for USD issuers (or “real money” investors) to swap into EUR on a covered basis
 - Doing the arbitrage tends to narrow the basis
 - However, synthetic is less liquid and has exposure to counterparty risk
Implications for EUR-based Agents

When cross-currency basis against EUR < 0

\[(1 + i^*) > \frac{S(1 + i)}{F}\]

- EUR borrowers pick RHS (synthetic EUR)
 - Arbitrage opportunity for EUR borrowers able to raise USD funds and swap into EUR
 - Synthetic is more costly to unwind early and has exposure to counterparty risk
 - Greater borrowing in USD tends to narrow the basis
Impact on Currency Composition of Global Bond Portfolios

<table>
<thead>
<tr>
<th>Interest Rate Risk</th>
<th>USD</th>
<th>EUR</th>
<th>JPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>U.S. Treasury Bond</td>
<td>U.S. T-Bond: Currency hedged to €</td>
<td>U.S. T-Bond: Currency hedged to ¥</td>
</tr>
<tr>
<td>EMU</td>
<td>JGB: Currency hedged to $</td>
<td>German Government Bond (Bund)</td>
<td>German Bund: Currency hedged to ¥</td>
</tr>
<tr>
<td>Japan</td>
<td>JGB: Currency hedged to €</td>
<td>JGB: Currency hedged to ¥</td>
<td>Japanese Government Bond (JGB)</td>
</tr>
</tbody>
</table>

- Diversify investment risks; diversify funding sources
- Uncertainty the CIP basis raises cost and uncertainty rolling short-term FX hedge (10-year bond, 1-month forward hedge)
Summing Up

- CIP fosters globalization through “perfect capital mobility”
- CIP deviations are persistent, vary by currency pair, by tenor, across time – a new normal
- Empirical evidence strongly suggests a link between USD \uparrow, bank leverage & cost of funds \uparrow, \Rightarrow CIP $\neq 0$
- Operational efficiency vs. Informational efficiency
 - More difficult and costly to do the arbitrage
 - Banks leaving money on the table, for others to pick
- Trade-Off
 - Greater bank safety + soundness / Lower int’l capital mobility
Examples of trades

Example USD deposit traded by Record

<table>
<thead>
<tr>
<th>USD synthetic deposit yield analysis</th>
<th>Deposit 11/07/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Leg (Converting USD to EUR via spot)</td>
<td></td>
</tr>
<tr>
<td>Initial USD Amount</td>
<td>10,000,000.00</td>
</tr>
<tr>
<td>Near Date</td>
<td>13/07/2017</td>
</tr>
<tr>
<td>Near Rate</td>
<td>1.1393</td>
</tr>
<tr>
<td>Generating Yield in EUR</td>
<td></td>
</tr>
<tr>
<td>Initial EUR Amount</td>
<td>8,777,319.41</td>
</tr>
<tr>
<td>EUR deposit Yield (annualised)</td>
<td>-0.64%</td>
</tr>
<tr>
<td>Final EUR Amount</td>
<td>8,772,326.09</td>
</tr>
<tr>
<td>Far Leg (Converting EUR to USD via a forward)</td>
<td></td>
</tr>
<tr>
<td>Far Date</td>
<td>14/08/2017</td>
</tr>
<tr>
<td>Far Rate</td>
<td>1.14122</td>
</tr>
<tr>
<td>Final USD Amount</td>
<td>10,011,153.99</td>
</tr>
<tr>
<td>USD Yield (annualised)</td>
<td>1.26%</td>
</tr>
<tr>
<td>Comparable 'Direct' USD Yield</td>
<td>1.15%</td>
</tr>
<tr>
<td>Value Added</td>
<td>0.11%</td>
</tr>
</tbody>
</table>

Example GBP TBill

<table>
<thead>
<tr>
<th>GBP synthetic T-bill yield analysis</th>
<th>T-bill 10/10/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Leg (Converting GBP to JPY via spot)</td>
<td></td>
</tr>
<tr>
<td>Initial GBP Amount</td>
<td>10,000,000.00</td>
</tr>
<tr>
<td>Near Date</td>
<td>12/10/2017</td>
</tr>
<tr>
<td>Near Rate</td>
<td>148.130</td>
</tr>
<tr>
<td>Generating Yield in JPY</td>
<td></td>
</tr>
<tr>
<td>Initial JPY Amount</td>
<td>1,481,300,000</td>
</tr>
<tr>
<td>JPY T-bill Yield (annualised)</td>
<td>-0.174%</td>
</tr>
<tr>
<td>Final JPY Amount</td>
<td>1,480,629,154</td>
</tr>
<tr>
<td>Far Leg (Converting JPY to GBP via a forward)</td>
<td></td>
</tr>
<tr>
<td>Far Date</td>
<td>15/10/2018</td>
</tr>
<tr>
<td>Far Rate</td>
<td>147.84888</td>
</tr>
<tr>
<td>Final GBP Amount</td>
<td>10,014,477.63</td>
</tr>
<tr>
<td>GBP Yield (annualised)</td>
<td>0.556%</td>
</tr>
<tr>
<td>Comparable 'Direct' GBP Yield</td>
<td>0.263%</td>
</tr>
<tr>
<td>Value Added</td>
<td>0.293%</td>
</tr>
</tbody>
</table>

Source: Record, Bloomberg. Data correct to 10th October 2017; The example USD trade was traded by Record on 11th July 2017 with an 'A' rated bank and compares the yield achieved to the best USD yield quoted to Record’s trading team by an equivalent or higher rated bank. The example GBP trade was based on achievable quotes given by Record’s trading counterparties.

RECORD CURRENCY MANAGEMENT