Present bias and consumption

David Laibson
Harvard University

Princeton Conference on Consumption and Finance

February 20, 2014
65–74 year old households surveyed in 2007 Survey of Consumer Finances

Median holding of financial assets is $68,100
“Leakage” (excluding loans) among households ≤ 55 years old

For every $2 that flows into US retirement savings system $1 leaks out

(Argento, Bryant, and Sabelhouse 2012)

Is the U.S. retirement system optimal?
Present-biased discounting

Current utils get full weight

Future utils weighted $\beta \delta^t$

$u_t + \beta \delta u_{t+1} + \beta \delta^2 u_{t+2} + \beta \delta^3 u_{t+3} + \beta \delta^4 u_{t+4} + \ldots$

$u_t + \beta [\delta u_{t+1} + \delta^2 u_{t+2} + \delta^3 u_{t+3} + \delta^4 u_{t+4} + \ldots]$
Some Predictions

- Households will have few liquid assets (hand to mouth)
- Households will have substantial illiquid assets
- Households will have a high MPC (0.30+) out of:
 - predictable and unpredictable liquidity shocks
 - predictable and unpredictable income
 - predictable and unpredictable liquid wealth
- Households will have a much lower MPC out of:
 - predictable and unpredictable illiquid wealth
- The choice architecture of savings institutions will make a big difference (e.g., opt-in vs. opt-out; ease of enrollment)
Households live hand to mouth
Lusardi and Tufano (2009)

How confident are you that you could come up with $2,000 if an unexpected need arose within the next month?

- I am certain...I could
- I could probably...
- I probably could not...
- I am certain...I could not
- Do not know.

47%
53%
High MPC’s out of predictable income changes
Shapiro (2005)

• For food stamp recipients, caloric intake declines by 10-15% over the food stamp month.

• To be explained by exponential discounting, requires an annual discount factor of

\[0.23 = \exp(-1.47). \]
High MPC’s out of Social security
Mastrobuoni and Weinberg (2009)

• Individuals with substantial savings smooth consumption over the monthly pay cycle
• Individuals without savings consume 25 percent fewer calories the week before they receive SS checks relative to the week after
Lifecycle simulations (Angeletos et al 2001)

- Mortality
- Dependents
- Retirement/Social Security
- Three educational groups: NHS, HS, COLL
- Stochastic labor income
- Credit limit: (.30)(permanent income)
- 3 state variables: liquid and illiquid wealth, income.
- 2 choice variables: liquid and illiquid wealth investment
Preferences

• Constant relative risk aversion = 2
• For exponential discounting economy:
 \(\beta = 1 \)
 \(\delta = 0.94 \) (match median ‘W/Y’ of 3.9 ages 50-59)
• For quasi-hyperbolic discounting economy:
 \(\beta = 0.7 \)
 \(\delta = 0.96 \) (match median ‘W/Y’ of 3.9 ages 50-59)
Predictions (HS education)

<table>
<thead>
<tr>
<th></th>
<th>Exponential</th>
<th>Hyperbolic</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>% with at least 1 month of income in liquid assets</td>
<td>73%</td>
<td>40%</td>
<td>42%</td>
</tr>
<tr>
<td>mean [\frac{\text{liquid assets}}{\text{total assets}}]</td>
<td>0.50</td>
<td>0.39</td>
<td>0.08</td>
</tr>
<tr>
<td>% with revolving credit</td>
<td>19%</td>
<td>51%</td>
<td>70%</td>
</tr>
<tr>
<td>mean credit card borrowing</td>
<td>$900</td>
<td>$3408</td>
<td>>$5000</td>
</tr>
<tr>
<td>MPC out of predictable movements in income</td>
<td>0.03</td>
<td>0.17</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Laibson, Repetto, and Tobacman (2012)

Use MSM to estimate discounting parameters:
- Substantial illiquid retirement wealth: W/Y = 3.9.
- Extensive credit card borrowing:
 - 68% didn’t pay their credit card in full last month
 - Average credit card interest rate is 14%
 - Credit card debt averages 13% of annual income
- Consumption-income comovement:
 - Marginal Propensity to Consume = 0.23
 (i.e. consumption tracks income)
LRT Results:

\[U_t = u_t + \beta [\delta u_{t+1} + \delta^2 u_{t+2} + \delta^3 u_{t+3} + ...] \]

- \(\beta = 0.70 \) (s.e. 0.11)
- \(\delta = 0.96 \) (s.e. 0.01)
- Null hypothesis of \(\beta = 1 \) rejected (t-stat of 3).
- Specification test accepted.
LRT Intuition

• Long run discount rate is $-\ln(\delta) = 4\%$, so save in long-run (illiquid) assets.
• Short-run discount rate is $-\ln(\beta\delta) = 40\%$, so borrow on your credit card today.
Some papers on commitment

- Strotz (1957)
- Thaler and Shefrin (1981)
- Schelling (1984)
- Ainslie (1992)
- Laibson (1997)
- Wertenbroch (1998)
- Laibson, Repetto, Tobacman (1998)
- Angeletos et al. (2001)
- Gul and Pesendorfer (2001)
- Ariely and Wertenbroch (2002)
- Ashraf, Karlan, and Yin (2006)
- Amador, Werning, and Angeletos (2006)
- Fudenberg and Levine (2006)
- Karlan, Gine, and Zinman (2009)
- Kauer, Kremer, and Mullainathan (2010)
- Houser, Schunk, Winter and Xiao (2010)
- Royer, Stehr, and Sydnor (2011)
- Alsan, Armstrong, Beshears, Choi, del Rio, Laibson, Madrian, Marconi (2011)

Homer (700 BC): “If you supplicate your men and implore them to set you free, then they must tie you fast with even more lashings.”
Ashraf, Karlan, and Yin (2006)

• Offered a commitment savings product to randomly chosen clients of a Philippine bank
• **28.4%** take-up rate of commitment product (either date-based goal or amount-based goal)
• Subjects with more present-bias are more likely to take up the product
Gine, Karlan, Zinman (2009)

- Tested a voluntary commitment product (CARES) for smoking cessation.
- Smokers offered a savings account in which they deposit funds for six months, after which take urine tests for nicotine and cotinine.
- If they pass, money is returned; otherwise, forfeited
- **11%** of smokers offered CARES take it up, and smokers randomly *offered* CARES were 3 percentage points more likely to pass the 6-month test than the control group
- Effect persisted in surprise tests at 12 months.
Kaur, Kremer, and Mullainathan (2010):

Compare two piece-rate contracts:

1. Linear piece-rate: w per unit produced

2. Linear piece-rate with penalty if worker does not achieve production target T (“Commitment”)
 - Earn $w/2$ for each unit produced if production $< T$
 - Jump up at T, returning to baseline contract
Kaur, Kremer, and Mullainathan (2010):

- Demand for Commitment: Commitment contract (Target > 0) chosen **35%** of the time
- Effect on Production: Being *offered* commitment contract increases average production by 2.3 percentage points relative to control
What are the features that make a savings account attractive?

- Liquidity?
- Illiquidity?
 - Present-biased preferences
- If people like illiquidity, what kind of illiquidity is most effective?
 - 10% penalty?
 - 20% penalty?
 - Complete illiquidity?
Allocate across two accounts
Beshears, Choi, Harris, Laibson, Sakong (2014)

<table>
<thead>
<tr>
<th>Freedom Account</th>
<th>Goal Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>❖ Liquid – can withdraw money any time within the period of experiment (1 year)</td>
<td>❖ Subject picks a goal date</td>
</tr>
<tr>
<td>❖ 22% interest per year</td>
<td>❖ Illiquid before goal date</td>
</tr>
<tr>
<td></td>
<td>❖ 10% early withdrawal penalty</td>
</tr>
<tr>
<td></td>
<td>❖ Liquid after goal date, just like freedom account</td>
</tr>
<tr>
<td></td>
<td>❖ 22% interest per year</td>
</tr>
</tbody>
</table>
Initial investment in goal account

- **Goal Account 10% penalty**
 - Freedom Account: 65%
 - Goal Account: 35%

- **Goal account 20% penalty**
 - Freedom Account: 57%
 - Goal Account: 43%

- **Goal account No withdrawal**
 - Freedom Account: 44%
 - Goal Account: 56%
Follow-up experiment

Subject allocates $100 between…

<table>
<thead>
<tr>
<th>Freedom Account</th>
<th>Goal Account(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Liquid – can withdraw money any time within the period of experiment</td>
<td>• Subject picks a goal and a goal date</td>
</tr>
<tr>
<td>• 22% interest per year</td>
<td>• Illiquid before goal date; liquid after goal date, just like Freedom Account</td>
</tr>
<tr>
<td>• 22% interest per year</td>
<td>• 22% interest per year</td>
</tr>
</tbody>
</table>

…at the end, 50% of subjects get all $100 in Freedom Account.
4 study arms:

<table>
<thead>
<tr>
<th>Arm</th>
<th>Goal Account characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm 1</td>
<td>10% Penalty before goal date</td>
</tr>
<tr>
<td>Arm 2</td>
<td>No Withdrawal before goal date</td>
</tr>
</tbody>
</table>
| Arm 3 | • 10% Penalty
 | • No Withdrawal |
| | \[\text{Two goal accounts} \] |
| Arm 4 | Safety Valve – no withdrawal before goal date, \textit{except} in case of a financial emergency as determined by the subject |
Goal amount by study arm (out of 100)

<table>
<thead>
<tr>
<th>#</th>
<th>Variation</th>
<th>N</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10% Penalty</td>
<td>100</td>
<td>$45.8</td>
</tr>
<tr>
<td>2</td>
<td>No Withdrawal</td>
<td>150</td>
<td>$53.7</td>
</tr>
<tr>
<td>3</td>
<td>Two Goal Accounts</td>
<td>150</td>
<td>$50.1</td>
</tr>
<tr>
<td></td>
<td>A (10% Penalty)</td>
<td></td>
<td>$16.2</td>
</tr>
<tr>
<td></td>
<td>B (No Withdrawal)</td>
<td></td>
<td>$33.9</td>
</tr>
<tr>
<td>4</td>
<td>Safety Valve</td>
<td>150</td>
<td>$45.3</td>
</tr>
</tbody>
</table>
Theory

Generalizations of Amador, Werning and Angeletos (2001), hereafter AWA:

1. Present–biased preferences
2. Short–run taste shocks.
3. A general commitment technology.
Timing

Period 0. An initial period in which a commitment mechanism is set up by self 0.

Period 1. A taste shock, θ, is realized and privately observed. Consumption (c_1) occurs.

Period 2. Final consumption (c_2) occurs.
Preferences

\[U_0 = \beta \delta \theta \ u_1(c_1) + \beta \delta^2 \ u_2(c_2) \]
\[U_1 = \theta \ u_1(c_1) + \beta \delta \ u_2(c_2) \]
\[U_2 = u_2(c_2) \]
Self 0 hands self 1 a budget set (subset of blue region)

Interpretation: when 1 is transferred from c_2 to c_1 no more then π are lost in the exchange.
Two-part budget set

\[c_1^* + c_2^* \]

slope = \(-1\)

\[\left(c_1^*, c_2^* \right) \]

slope = \(-\frac{1}{1 - \pi}\)

\[c_1^* + c_2^*(1 - \pi) \]
Theorem 1

Assume:
- CRRA utility.
- Early consumption penalty bounded above by π.

Then, self 0 will set up two accounts:
- Fully liquid account
- Illiquid account with penalty π.
Theorem 2:

Assume log utility.

Then the amount of money deposited in the illiquid account rises with the early withdrawal penalty.
Initial investment in goal account

<table>
<thead>
<tr>
<th>Goal Account</th>
<th>Freedom Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% penalty</td>
<td>35%</td>
</tr>
<tr>
<td>20% penalty</td>
<td>43%</td>
</tr>
<tr>
<td>No withdrawal</td>
<td>56%</td>
</tr>
</tbody>
</table>
Theorem 3 (AWA):

Assume self 0 can pick any consumption penalty.

Then self 0 will set up two accounts:
- fully liquid account
- fully illiquid account (no withdrawals in period 1)
Corollary

Assume there are three accounts:

- one liquid
- one with an intermediate withdrawal penalty
- one completely illiquid

Then all assets will be allocated to the liquid account and the completely illiquid account.
When three accounts are offered

<table>
<thead>
<tr>
<th>Goal account</th>
<th>Freedom Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>No withdrawal</td>
<td>33.9%</td>
</tr>
<tr>
<td></td>
<td>49.9%</td>
</tr>
<tr>
<td>Goal Account</td>
<td>16.2%</td>
</tr>
<tr>
<td>10% penalty</td>
<td></td>
</tr>
</tbody>
</table>
Open questions

- House money vs. own money
- Interest rates
- Demand effect (?)
- Stakes
- Short-run vs. Long-run
- Trust
Extensions

- Potential implications for the design of a retirement saving system?
- Theoretical framework needs to be generalized:
 1. Allow penalties to be transferred to other agents
 2. Heterogeneity in sophistication/naivite
 3. Heterogeneity in present–bias
Extension: Interpersonal Transfers

- If a household spends less than its endowment, the unused resources are given to other households.
- E.g. penalties are collected by the government and used for general revenue.
- This introduces an externality, but only when penalties are paid in equilibrium.
- Now the two–account system with maximal penalties is no longer socially optimal.
- AWA’s main result does not generalize.
Formally:

- Government picks an optimal triple \(\{x,z,p\} \):
 - \(x \) is the allocation to the liquid account
 - \(z \) is the allocation to the illiquid account
 - \(p \) is the penalty for the early withdrawal
- Endogenous withdrawal/consumption behavior generates overall budget balance.

\[
x + z = 1 + pE(w)
\]

where \(w \) is the equilibrium quantity of early withdrawals.
Socially optimal penalty on illiquid account (truncated Gaussian taste shocks)

Present bias parameter: β
Two key properties

- The optimal penalty almost eliminates early withdrawals.
 - This engenders an asymmetry: better to set the penalty above its optimum then below its optimum.
- Welfare losses are in $(1 - \beta)^2$.
 - Getting the penalty right for low β agents has much greater welfare consequences than getting it right for high β agents.
Expected Utility Given A Fixed Penalty Level: $\beta=0.6$

Penalty for Early Withdrawal
Expected Utility Given A Fixed Penalty Level: $\beta = 0.1$
Expected Utility Given A Fixed Penalty Level

Penalty for Early Withdrawal

\[\beta = 1.0 \]
\[\beta = 0.9 \]
\[\beta = 0.8 \]
\[\beta = 0.7 \]
\[\beta = 0.6 \]
\[\beta = 0.5 \]
\[\beta = 0.4 \]
\[\beta = 0.3 \]
\[\beta = 0.2 \]
\[\beta = 0.1 \]
To paraphrase Lucas:

Once you start thinking about low β households, nothing else matters.
Consequently, very large penalties are optimal if there is substantial heterogeneity in β.
Government picks an optimal triple \(\{x,z,p\} \):
- \(x \) is the allocation to the liquid account
- \(z \) is the allocation to the illiquid account
- \(p \) is the penalty for the early withdrawal

Endogenous withdrawal/consumption behavior generates overall budget balance.

\[
 x + z = 1 + pE(w)
\]

- \(\beta \) uniform in \{.1, .2, .3, .4, .5, .6, .7, .8, .9, 1\}
- Then expected utility is increasing in the penalty until \(p \approx 100\% \).
Conclusions

- Our three-period model and experimental evidence imply that optimal retirement systems have highly illiquid retirement accounts.

- Good news: Almost all countries in the world have a system like this: A public social security system plus **illiquid** supplementary retirement accounts (either DB or DC or both).

- Bad news: The U.S. doesn’t – our defined contribution retirement accounts are essentially **liquid**.