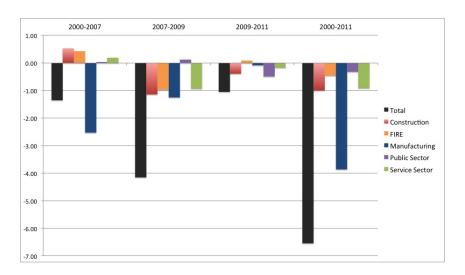

# Import Competition and the Great U.S. Employment Sag of the 2000s

Daron Acemoglu David Autor
David Dorn Gordon Hanson Brendan Price

February 2015

# From the Roaring 90's to the 'Great Sag' Growth of U.S. employment rate decelerates after 2000

Figure 1. Employment-Population Ratios, Overall and by Sex, 1970–2011




### What do we know about the Great Sag?

#### Decline of employment rate is little understood (Moffitt '12)

- Potential causes
  - Wage levels, age structure, family structure, taxes, transfers, minimum wage policies, population health
- One factor has substantial explanatory power
  - Declining wage rates, particularly for males
- But why did employment, wages decline?
  - Suggests inward demand shift

# Importance of manufacturing for the 'Great Sag' 2000-2011 OECD data: Emp by sector divided by pop age 15-64



# The Great Sag — 'jobs deficit' What if emp growth had not slowed in 2000s?

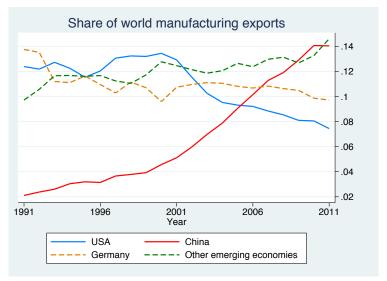
| 1991 Level (1,000s) |
|---------------------|
| 2000 Level (1,000s) |
| 2007 Level (1,000s) |
| 2011 Level (1,000s) |

| Manufacturing | Non-Manuf |
|---------------|-----------|
| 18,341        | 73,813    |
| 17,100        | 92,711    |
| 13,903        | 102,797   |
| 11,419        | 98,261    |

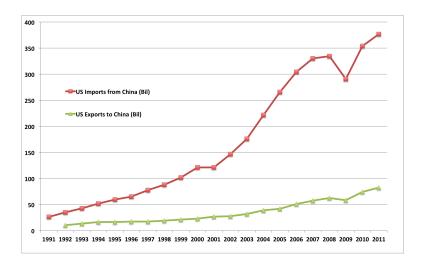
Growth Rate p.a. 91-00 Growth Rate p.a. 00-07 Growth Rate p.a. 07-11

| -0.8% | +2.6% |
|-------|-------|
| -2.9% | +1.5% |
| -4.8% | -1.1% |

2007 Counterfactual w/ 91-00 Growth Jobs Deficit (1,000s)


| 16,194 | 110,696 |
|--------|---------|
| -2,229 | -7,898  |

2011 Counterfactual w/ 00-07 Growth


Jobs Deficit (1,000s)

| 12,352 | 109,046 |
|--------|---------|
| -934   | -10,785 |

# Potentially underappreciated factor in U.S. employment *China's growing presence in world trade*



# Bilateral trade flows: U.S. - China imports and exports



### Sources of China's export growth

Reforms that began in 1980s, had major impacts in 1990s & 2000s

- 1 China initiates export-led development: mid 1980s
  - Deng's "reform and opening" (many limits on trade, FDI continue)
  - China's share of world manuf. exports: 1% in 1984, 2% in 1991
- 2 Deng's rebound in 1992 leads to surge in FDI, spread of SEZs
  - Inward FDI in China/GDP: 1% in 1991, 6% in 1994
  - China's share of world manuf. exports: 2% in 1991, 12% in 2007
- 3 China's WTO entry in 2001 solidifies MFN status in US

# Recent literature on labor market effects of trade Impact on equilibrium wages and employment

#### Structural GE approaches

- Search frictions, specific human capital, firm exit costs
  - Cosar '11, Dix Carneiro '11, Cosar et al '11, Helpman et al '10 & '12, Burstein & Vogel '13, Fajgelbaum '13, Dix-Carneiro '14

#### Reduced-form approaches

- Adjustment at firm, industry or region level
  - Bernard et al '06, Verhoogen '08, Amiti & Davis '11, Bloom et al '12, Hummels et al '13
  - Goldberg & Pavcnik '03, Artuc et al '10, Ebenstein et al '10, McLaren & Hakobyan '11, Menezes-Filho & Muendler '11, Pierce & Schott '14
  - Borjas & Ramey '95, Chiquiar '08, Topalova '10, Kovak '13, Autor Dorn & Hanson '13

### Effect of China competition on U.S. manuf employment

# Sizable share of U.S. *manufacturing* employment decline due to China competition

- Bernard, Jensen, Schott '06 (plant-level analysis): 14% of decline in mfg employment '77—'97 due to low-income countries
- Pierce and Schott '14 (industry-level analysis): 16% reducation in employment growth of average industry '01—'07 due to China
- 3 Autor, Dorn and Hanson '13 (geo-level analysis): 25% of decline in mfg employment '00—'07 due to China
- 4 European evidence: Bloom, Draca and Van Reenen '12; Dauth, Findeisen and Südekum '13, Pessoa '14

#### What about overall employment impact?



# Employment effects of Chinese import competition Conceptual framework

- + Indirect impact on linked industries
- + Aggregate demand effects
- + Aggregate reallocation effects

#### Exercise 1: Industry-level analysis of import-exposed sectors

Industry-level analysis: Direct estimates for  $\Delta$  U.S. manufacturing employment

- + Indirect impact on linked industries
- + Aggregate demand effects
- + Aggregate reallocation effects

#### Exercise 2: Industry-level analysis with input-output linkages

Add input-output linkages: Observe spillovers across industries

- disruption of supply chains may affect industries that sell to or by from directly exposed industries
- via input-output linkages, effect of goods trade in industries outside of manufacturing

- + Indirect impact on linked industries
- + Aggregate demand effects
- + Aggregate reallocation effects

#### Exercise 3: Local labor market-level analysis

Local labor market analysis: Observe sum of local GE effects

- local component of aggregate demand effect
- relocation of workers to non-exposed industries

- + Indirect impact on linked industries
- + Aggregate demand effects
- + Aggregate reallocation effects

# Agenda

- 1 Empirical measurement
- 2 Data sources and initial industry-level estimates
- 3 Adding input/output linkages
- 4 Local labor market estimates
- 6 Conclusion

# Mapping import shocks to U.S. employment *OLS approach*

#### Ordinary least squares estimation

• Using observed  $\Delta's$  in Chinese industry import penetration

$$\Delta IP_{j,\tau} = rac{\Delta M_{j,\tau}^{US,CH}}{Y_{j,91} + M_{j,91} - E_{j,91}}$$

- $\Delta M^{UC}_{j au}$  is change in China imports over 1991 2011 in industry j
- $Y_{j0} + M_{j0} E_{j0}$  is initial absorption: shipments,  $Y_{j0}$ , + imports,  $M_{j0}$ , exports,  $E_{j0}$

#### Eq'n follows from trade models w/gravity structure

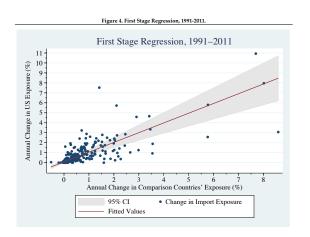
• Response in demand for U.S. output to supply shock from China in the markets in which U.S., China compete

# Isolating the <u>supply shock</u> component of China Imports Instrumental variables approach

#### **Problem**

ullet US import demand  $\Delta's$  may contaminate estimation

#### Instrumental variables approach


- IV for US imports from China using other high income countries: Aus, Den, Fin, Ger, Jpn, Nzl, Spn, Swi
- ullet Assumption: Common component of  $\Delta$  in rich country imports from China is China export supply shock

$$\Delta IPO_{j,\tau} = \frac{\Delta M_{j,\tau}^{OTH,CH}}{Y_{j,88} + M_{j,88} - E_{j,88}}$$

Denominator: lagged value of shipments for industry j in '88



# Isolating the <u>supply shock</u> component of China Imports First stage regression

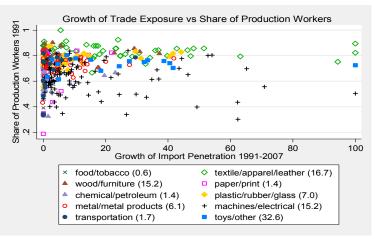


#### Alternative measures of trade exposure

#### Autor, Dorn, Hanson '13 explore five alternatives

- ① Use gravity model to estimate China export supply shock
- 2 Add to imports from China imports from other low-wage countries
- Include changes in import penetration in other US destination markets
- 4 Replace gross imports with net imports (in dollars or factor units)
- 6 Adjust for imports of intermediate inputs

#### These measures yield similar estimates in ADH '13


# Agenda

- Empirical measurement
- 2 Data sources and initial industry-level estimates
- 3 Adding input/output linkages
- 4 Local labor market estimates
- 6 Conclusion

#### Data sources

- International trade data 1991 2011 from UN Comrade Database (6-digit HS products)
- **2** U.S. employment from County Business Patterns: 1991, 1999, and 2011
- 3 NBER-CES Manufacturing Industry Database 1976 through 2009
- 4 U.S. Bureau of Economic Analysis 1992 input-output table for the U.S. economy

#### Direct import exposure at the industry level



Notes: Numbers in parentheses in the legend indicate average growth of import penetration within industry group, weighted by 1991 employment. Values for growth of import penetraton are winsorized at 100.

Avg  $\Delta$  import pen. p.a. is 0.3 (sd 0.8) in 1990s, 0.8 (sd 1.5) in 2000s, 0.8

### Estimation: Basic regression model

# Outcome var: Change in log industry employment, 1991-1999 and 1999-2011

- $\Delta \ln EMP_{j\tau} = \alpha_{\tau} + \beta_1 \Delta IP_{j\tau} + \gamma X_{j0} + e_{j\tau}$ 
  - $\Delta \ln EMP_{j\tau}$  is  $100 \times \Delta \ln (\text{employment})$  p.a.
  - $\Delta IP_{j\tau}$  is import exposure index (100× annual  $\Delta$ )
  - $\Delta IP_{j\tau}$  is instrumented by  $\Delta IPO_{j\tau}$
  - X<sub>j0</sub> comprises industry-level controls

# Controlling for industry-level confounds

- Confound: Technology and capital intensity
  - Trade ↔ Technical change?
  - Controls: Prod'n worker share, ln(wagebill/emp),
     capital/value-added, computer + high-tech equipment invest share
- 2 Confound: Long run decline in U.S. manufacturing
  - Are the 'affected' inds declining prior to China shock?
  - Controls: Pretrends in industry employment and earnings:  $\Delta$  ind share of U.S. emp,  $\Delta$  log of ind average wage 1976–1991
- Confound: Trends in manufacturing sub-sectors
  - Most exposed: Toys, sports equipment; apparel; electronics
  - Least exposed: Food; chemical + petroleum; transportation
  - Controls: Subsector dummies, industry FEs



#### Direct effect estimates: 1991-2011

Effect of Import Exposure on Manufacturing Emp, 1991-2011 Dep. Var.: 100 x Annual Log Δ in Employment

|                                                                   | OLS<br>(1)         | 2SLS<br>(2)        | 2SLS<br>(3)        | 2SLS<br>(4)        | 2SLS<br>(5)        | 2SLS<br>(6)        | 2SLS<br>(7)        |
|-------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| $100\mathrm{x}$ Annual $\Delta$ in US Exposure to Chinese Imports | -0.81***<br>(0.16) | -1.30***<br>(0.41) | -1.10***<br>(0.35) | -1.33***<br>(0.43) | -0.75***<br>(0.22) | -0.74***<br>(0.22) | -0.60***<br>(0.29) |
| Production Controls                                               | No                 | No                 | Yes                | No                 | No                 | No                 | No                 |
| Pretrend Controls                                                 | No                 | No                 | No                 | Yes                | No                 | Yes                | No                 |
| 1-Digit Mfg Sector Controls                                       | No                 | No                 | No                 | No                 | Yes                | Yes                | No                 |
| 4-Digit Industry FEs                                              | No                 | No                 | No                 | No                 | No                 | No                 | Yes                |

Notes: Each column reports results from stacking log employment changes and changes in US exposure to Chinese imports over the periods 1991-1999 and 1999-2011 (N = 784 = 392 4-digit manufacturing industries x 2 periods). Observations are weighted by 1991 employment. Standard errors in parentheses are clustered on 135 3-digit industries. \* p<0.10, \*\* p<0.05, \*\*\* p<0.01.

# Converting regression results to estimated job losses

- Multiply coefficient from model w/o sector FEs with observed change in industry-level US import penetration
- Multiply the product with 0.56 (r2 of first stage regression) to capture only the shift in import penetration that we attribute to the Chinese supply shock
- 3 Convert from log employment changes in industries to headcounts

#### Contribution of import competition to employment decline

#### Implied Emp Changes Induced by Growing Import Exposure

|   |          |                    | Implied E | t Changes |           |
|---|----------|--------------------|-----------|-----------|-----------|
|   | Analysis | Affected Sector(s) | 1991-1999 | 1999-2011 | 1991-2011 |
| A | Industry | Manufacturing      | -277k     | -560k     | -837k     |

# Agenda

- Empirical measurement
- 2 Data sources and initial industry-level estimates
- 3 Adding input/output linkages
- 4 Local labor market estimates
- 6 Conclusion

# Adding Input-output linkages

Downstream — Industry j sells to trade-exposed industry g

• Adverse effect on j: Reduces demand for j's output

Upstream — Industry j buys from trade-exposed industry g

- Ambiguous effect on j
- May reduce j's costs or may destroy existing long-term relationships

# Adding input-output linkages

#### Examples for sectoral linkages outside of manufacturing

- Fertilizer mining industry (non-manuf)
  - $\bullet$  Sells 85% of output to manufacturing,  $1/4^{\mbox{th}}$  to phosphatic fertilizer industry
- Iron and ferro-alloy ores (non-manuf)
  - Sells 92% of output to manufacturing sector, 2/3<sup>rds</sup> to blast furnace and steel mill industry
- Service industries with substantial sales to mfg: wholesale trade, equipment leasing, repair, advertising

# Measuring Indirect Trade Exposure

#### Measurement (downstream exposure)

$$\triangle IP_{j\tau}^D = \sum_{g} w_{gj}^D \triangle IP_{g\tau}$$

- where  $w_{gj}^D$  is the fraction of all sales by industry j that go to industry g
- · analogous measurement for upstream exposure

#### Extension

 Derive weights from Leontief inverse of industry I-O matrix to account for higher-order linkages

### Descriptives: indirect exposure

Direct, Downstream, and Upstream Import Shocks, 1991-2011

|                             | $\frac{\text{Mfg Ind (N = 392)}}{\text{Mean/SD}}$ | Non-Mfg Ind (N = 87) Mean/SD |
|-----------------------------|---------------------------------------------------|------------------------------|
| Direct Import Shocks        |                                                   |                              |
| Direct Shock                | 0.50                                              |                              |
|                             | (0.94)                                            |                              |
| First-Order Indirect Shocks |                                                   |                              |
| Downstream Shock            | 0.16                                              | 0.03                         |
|                             | (0.26)                                            | (0.04)                       |
| Upstream Shock              | 0.10                                              | 0.03                         |
|                             | (0.11)                                            | (0.04)                       |
| Full Indirect Shocks        |                                                   |                              |
| Downstream Shock            | 0.24                                              | 0.06                         |
|                             | (0.35)                                            | (0.07)                       |
| Upstream Shock              | 0.14                                              | 0.05                         |
| -                           | (0.13)                                            | (0.05)                       |

#### Models that include input-output linkages, 1991-2011

2SLS Estimates Incorporating Input-Output Linkages.

Dep. Var.: 100 x Annual Log Δ in Employment

| zep. van 100 x 11111 zeg z 111 zmp10 yment |                    |                    |                   |                   |                    |                   |                    |
|--------------------------------------------|--------------------|--------------------|-------------------|-------------------|--------------------|-------------------|--------------------|
|                                            | Mfg Only           | (N = 784)          | Non-Mfg (N = 174) |                   | Pooled (N = 958)   |                   |                    |
|                                            | (1)                | (2)                | (4)               | (5)               | (6)                | (7)               | (8)                |
| Direct Trade Shock                         | -1.17***<br>(0.42) | -1.28***<br>(0.49) |                   |                   | -1.14***<br>(0.42) | -1.11**<br>(0.48) | -1.18***<br>(0.42) |
| Downstream Shock                           | -2.21*<br>(1.14)   | -2.44**<br>(1.13)  | -6.63**<br>(2.79) | -6.88**<br>(2.97) | -2.70**<br>(1.26)  | -2.64*<br>(1.32)  | -1.90**<br>(0.86)  |
| Upstream Shock                             |                    | 2.31<br>(2.66)     |                   | -5.80<br>(7.43)   |                    | -0.67<br>(3.69)   |                    |
| Higher-Order I-O                           | No                 | No                 | No                | No                | No                 | No                | Yes                |

Notes: Each column stacks changes in log employment and changes in direct, upstream, and downstream import exposure over the periods 1991-1999 and 1999-2011. Purchase and sales shares are taken from the Bureau of Economic Analysis's 1992 benchmark input-output table. Observations are weighted by 1991 industry employment, and standard errors in parentheses are clustered on 3-digit industry (with each non-manufacturing industry constituting its own cluster). \* p<0.10, \*\* p<0.05, \*\*\* p<0.01.

# Contribution of import competition to employment decline

#### Implied Emp Changes Induced by Growing Import Exposure

|           |               |                    | Implied Employment Change |           |           |  |
|-----------|---------------|--------------------|---------------------------|-----------|-----------|--|
|           | Analysis      | Affected Sector(s) | 1991-1999                 | 1999-2011 | 1991-2011 |  |
| A         | Industry      | Manufacturing      | -277k                     | -560k     | -837k     |  |
| <b>B1</b> | Industry      | Total              | -556k                     | -1,581k   | -2,137k   |  |
|           | w/ I-O Links  | Manufacturing      | -404k                     | -928k     | -1,332k   |  |
|           | (First Order) | Non-manufacturing  | -152k                     | -653k     | -805k     |  |

# Contribution of import competition to employment decline

#### Implied Emp Changes Induced by Growing Import Exposure

|    |               |                    | Implied Employment Chang |           |           |  |  |
|----|---------------|--------------------|--------------------------|-----------|-----------|--|--|
|    | Analysis      | Affected Sector(s) | 1991-1999                | 1999-2011 | 1991-2011 |  |  |
| A  | Industry      | Manufacturing      | -277k                    | -560k     | -837k     |  |  |
| B1 | Industry      | Total              | -556k                    | -1,581k   | -2,137k   |  |  |
|    | w/ I-O Links  | Manufacturing      | -404k                    | -928k     | -1,332k   |  |  |
|    | (First Order) | Non-manufacturing  | -152k                    | -653k     | -805k     |  |  |
| B2 | Industry      | Total              | -645k                    | -1,979k   | -2,624k   |  |  |
|    | w/ I-O Links  | Manufacturing      | -421k                    | -985k     | -1,406k   |  |  |
|    | (Full)        | Non-manufacturing  | -224k                    | -994k     | -1,218k   |  |  |

# Agenda

- Empirical measurement
- ② Data sources and initial industry-level estimates
- 3 Adding input/output linkages
- 4 Local labor market estimates
- 6 Conclusion

# Industry vs local labor market analysis

#### Limitations of industry-level analysis

- Cannot observe <u>aggregate demand effect</u>: Reduced earnings and lower spending lower aggregate demand. Employment effect in industry with zero direct+indirect trade exposure industry may be negative.
- 2 Cannot observe <u>relocation effect</u>: Some workers realocate from trade-exposed to other industries. Employment effect in industry with zero direct+indirect trade exposure industry may be positive.

# Industry vs local labor market analysis

# Local labor market analysis can capture the *local component* of these GE effects

- Reduction in local spending will reduce demand for locally produced outputs, particularly non-tradables.
- 2 Little worker mobility across local labor markets in response to trade shocks (Autor, Dorn, Hanson, Song '14); relocation effects should be mostly local.

### Measuring Trade Exposure at CZ level

Autor, Dorn, Hanson, Song '14: Measure  $\Delta$  CZ's import exposure as weighted average of exposure in the CZ's industries

$$\Delta IPCZ_{i\tau} = \sum_{j} \frac{E_{ij\tau}}{E_{i\tau}} \Delta IP_{j\tau}$$

#### Instrumental variables approach

Analogous measure: employment-weighted average of industry-level instrument

#### Geography of Trade Exposure



#### Estimation: CZ regression model

# Outcome var: Change in sector employment/working age pop, 1991-1999 and 1999-2011

- $\Delta EP_{is\tau} = \alpha_{s\tau} + \beta_1 \Delta IPCZ_{i\tau} \times 1[Exposed_s] + \beta_2 \Delta IPCZ_{i\tau} \times (1 [Exposed_s]) + \gamma X_{is0} + e_{is\tau}$ 
  - $\Delta EP_{is\tau}$  is  $100 \times$  Sector Emp/Pop for CZ i, sector s
  - $\Delta IPCZ_{i\tau}$  is import exposure in CZ i, instrumented by  $\Delta IPCZ_{i\tau}^{OTH}$
  - 1[Exposed<sub>s</sub>] is a dummy for trade-exposed sector (comprising industries with non-negligible direct/indirect exposure)
  - X<sub>is0</sub> comprises CZ×sector controls

#### Models of local labor market exposure

2SLS Estimates of Import Effects on Commuting Zone Emp/Pop Ratios Dep. Var.: 100 x Δ in (Local Emp in Sector / Local Working-Age Pop)

|                                                                     | Overall Employment |                    | Sectoral E         | mployment          |
|---------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|
|                                                                     | (1)                | (2)                | (3)                | (4)                |
| Commuting Zone Import Shock                                         | -1.64***<br>(0.46) | -1.70***<br>(0.78) |                    |                    |
| Commuting Zone Import Shock x 1{Exposed Sector}                     |                    |                    | -1.95***<br>(0.16) | -1.68***<br>(0.24) |
| Commuting Zone Import Shock x 1{Non-Exposed Tradable Sector}        |                    |                    | -0.01<br>(0.06)    | -0.00<br>(0.11)    |
| Commuting Zone Import Shock<br>x 1{Non-Exposed Non-Tradable Sector} |                    |                    | 0.33<br>(0.39)     | -0.01<br>(0.57)    |
| Sector x Time Effects                                               | Yes                | Yes                | Yes                | Yes                |
| Sector x Mfg Emp Share at Baseline                                  | No                 | Yes                | No                 | Yes                |
| Sector x Census Division                                            | No                 | Yes                | No                 | Yes                |
| N                                                                   | 1444               | 1444               | 2888               | 2888               |

Notes: Each column reports results from stacking changes in commuting zone employment-to-population ratios and changes in commuting zone exposure to Chinese imports over the periods 1991-1999 and 1999-2011. Observations are weighted by commuting zone population as of 1991. Standard errors in parentheses are clustered on commuting zone. \* p<0.10, \*\* p<0.05, \*\*\* p<0.05, \*\*\* p<0.05.

# Contribution of import competition to employment decline

#### Implied Emp Changes Induced by Growing Import Exposure

|   |              |                           | Implied Employment Changes |           |           |
|---|--------------|---------------------------|----------------------------|-----------|-----------|
|   | Analysis     | Affected Sector(s)        | 1991-1999                  | 1999-2011 | 1991-2011 |
| A | Industry     | Manufacturing             | -277k                      | -560k     | -837k     |
| В | Industry     | Total                     | -645k                      | -1,979k   | -2,624k   |
|   | w/ I-O Links | Manufacturing             | -421k                      | -985k     | -1,406k   |
|   |              | Non-manufacturing         | -224k                      | -994k     | -1,218k   |
| C | Commuting    | Total                     | -743k                      | -2367k    | -3,110k   |
|   | Zone         | Exposed industries        | -737k                      | -2348k    | -3,086k   |
|   |              | Non-exposed tradables     | 0                          | -1k       | -1k       |
|   |              | Non-exposed non-tradables | -5k                        | -17k      | -23k      |

# Agenda

- Empirical measurement
- 2 Data sources and initial industry-level estimates
- 3 Adding input/output linkages
- 4 Local labor market estimates
- **6** Conclusion

# Role of import competition in the 'great' U.S. employment sag of the 2000s?

#### • Industry and I-O analysis: important inter-industry spillovers

 substantial trade-induced job losses not only in manufacturing but also in linked non-manufacturing

#### CZ analysis: imperfect local reallocation

- local employment decline in trade-exposed industries not offset by gains in non-exposed industries
- negative aggregate demand effects at local level and labor market frictions will slow reallocation

#### 1 Import competition from China contributes to "Great Sag"

 Job loss accelerates from -0.7m jobs in 1990s to about -3m jobs in 2000s

